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2 Hirsch, Joy and Hylton, Ron

A Model for The Processing of Position Information in ¢he Human Visual

! System

T We present a model for the processing of positional information in the

human visual system, with particular emphasis on visual tasks that involve

o

the measurement of spatial separation. The model is in many respects a

radical departure from current thinking about problems in vision. Of

Fr e B B e

particular note is the fundamental significance we attach to the retinal
photoreceptor lattice, considered as a two-dimensional spatial sampling

system. Mechanisms of neural interpolation are discussed and hyperacuity

MO NS

2 is a natural consequence of the model. Major concerns which we do not
address are questions of temporal dependence and the integration of

- binocnlar information. Ve refer to the model as the scaled lattice

.- model.

v The model consists of a number of elements summarized in Figure 1 as
follovws:

- an external luminance distribution (image) is blurred by
convolution with a point spread function (or line spread function for a one
dimensional distribution) and then sampled by a lattice of retinmal
photodetectors with center—to-center spacing d (Fig 1: a,b,c).

- the sampled image is transmitted to higher visual centers where {t
is reconsiructed on » houral lattice by interpolating between the samples
(Fig 1: d,9).

- the effective spacing of the neural lattice is some integer (N)

times finer than the spacing of the photodetectors, (Fig 1: the ratio of
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photodetector spacing to the neural grid is 1/3),

- position information in the reconstructed image is oxtracted by

(el | TR

determining the locations of specific stimulus features on the meural
lattice, in particular the luminance peaks, (Fig 1: e,f).

~ the separation between two features such as pesks is determined by
counting the number of neural units between the features (Fig 1: o,f,g).

~ the error in determining a separation (As) is proportional to the

g
J
3
d
"l
'
i
3
i
3

positionsl quantization (spacing) of the seural lattice.
~ the interpolation factor N (the ratio of photoreceptor spacing to
nenral unit spacing) varies with the separation of the pesks in such a

way that the fractional error in separation (As/s) is roughly constant.

The offects of retinsl sampling

The following discussion assumes one dimensional images for
convenience. Consider the extornal image. It is described by the fuanction
L(x) which gives the value of the luminance at every point x., For
convenience, we assume that x ranges from ~» to o, although the range is in
fact finite. The basic problem is this: since L(x) is a continuous
function of x, an exact representation of the function would require
measuring the luminance at an infinite number of points. This is clearly
not feasible since an eys is constructed with a finite number of

pbotoreceptors. Thus, the question arises of how well L(x) can de

ropresented with a finite number of measurements. A formal answer to this
question is found in the sampling theorem: 4if L(x) contained mo Fourier
components with s frequency greater tham f,. ., then L(x) could be

represented exactly by measuring its values at points separated in space by
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a distance of 1/(2f,,,). S8ince L(x) has a finite width VW, the totsal
aumber of measurements is 2Wfg,,,, s finite number. The sampling theorem
slso says that there is no way to represent L(x) with fever measurements.
Thus sampling L(x) at an interval of 1/(2f,,,) gives the most compact
possible encoding of the bandwidth limited L(x). However, L(x) is not a
priori limited in bandwidth. To apply the sampling theorem, we must remove
all Fourier components sbove f_,.. This is sccomplished in the eye by
convoluting the external image with the retinal (optical) line spread
function, which effectively filters out the high spatisl frequency
compopents. Thus, the sampling theorem provides a very useful gunide: if
the line spread function removes all Fourier components above fg,,,, then
sampling the band-limited function at intervals of 1/(2f,,,) entails no
further loss of information, In principle, the continuous band-limited
function can be exactly reconstructed from the samples by use of the
sin(x)/x function. However, it is not clear that it is mecessary or even
desirable to exactly reconstruct the band~limited function everywhere.
After ail, the band-limited function is already a distorted version of the
original luminance function,

For some visual tasks it might suffice to reconstruct the sampled
image exactly only mnear the luminance peaks, where the function is
quadratic and relatively easy to reconstruct. Indeed certain forms of
distortion in the reconstruction might be useful such as the eodge
dlstorgion discussed bplow. However, the sampling theorem gives a good
ostimate of what is possible, and we assume the basic reasoning is
applicable to the human visual system: the line spread function acts to

band 1limit the externsl luminance distridbution in snch a way that the image
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falling on the retina can be oxactly recovered from the sampled version of
the image. To see more clearly what is lost and gained by this process
consider Fig 1a and 1b, Fig la shows the external image, 8 narrov line
(delta function). Fig 1b shows the image falling on the retina after
convolution with the line spread function. The original narrow image has
been spread out and nov bhas a shape dictated by the line spread function.
Thus at the initial stages of image reconstruction we have lost the ability
to measure widths narrower than the line spread function, and also the
ability to resolve two lines whose separation is less than the width of the
line spread function. Note however that the position of the peak of the
distribution in Fig 1b coincides exactly with the position of the original
line, and thus no positional information has been lost, as long as the
peaks of the external distribution are well separated. From this point of
view, the combination of convolution with the line spread function followed
by retinal sampling bas effectively compressed almost all the positional
information of the original distribution into a finite number of
measurements for transmission to the cortex, where the ability to recover
the position of the original line in Fig la will only be limited by the
ability to locate the peak of the distribution in Fig 10,

The above argument can be restated without reference to the sampling
theorem. If the line spread function were infinitely marrow, the luminance
at s ssmple point would contain information about the external image only
at thng point. With a finite width line spread function, the luminance at
each sample point contains information about the external image extending

over a range of positions around that point., Since the luminance at

location x is now highly correlated with the luminance at x + Ax, if Ax is
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much less than the width of the line spread function, there is no meed to
measure the luminance at x + Ax. Thus & finite sampling interval is
adequate. A useful analogy is that the photoreceptors convert a continuous
distribution into what is essentially a histogram. The center of s peak on
s histogram can be determined quite precisely (to an accuracy much smaller
than the bin size) as long ss the width of the peak is several bims. (If
the peak fell entirely within one bin, we could not determine its position
to an accuracy better than the bin width). The line spread function acts
to guarantee that the minimum width of the peak is soeveral bins. Ve
emphasize that the image must be blurred in some manner so that s marrow
external image excites at least three photoreceptors. (The number three
arises because a quadratic bas three coefficients.,) If not, the peak
position could not be recovered from the sampled measurements. It is
estimated that in the central fovea the line spread function covers

spproximately fonr photoreceptors and thus this condition is met.

Peaks and Position Information

We regard luminance peaks (maxima) as important features in the
snalysis of an image. There are a number of reasons to single out peaks
for special consideration. One reason is illustrated im Figs 1la and 1b.
As discussed sbove, there is a close connection between the peak in 1b and
the position of the line in 1la. In fact, regions where the luminance
rises or falls continuously, or remains constant, seem to contain little
information about ’positions’. ’Position’ generally seems to be associated

with a change in the luminance slope, and a peak occurs when the sign of

the slope changes., Peaks have s nomber of other desirable properties.
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Peaks are regions where s quadratic approximation provides s good fit to

the measurements, and thus peaks are quite sasy to recomstruct accurately.
Since a quadratic function has three coefficients, recomstructing a
quadratic only requires input from three sample points. In contrast to
this a function like sin(x)/x is a high order polynomial and requires many
inputs. Similarly, peaks (being local features) are determined by
comparing the luminances at nesardby points, and a peak detector (Fig 1f)
only requires input from three sdjacent neural units. In contrast to this
an edge or 'zero crossing’ detector requires as input both the value of the
luminance at each point snd the value of ’zero’ at each point. The ’zero’
point is nmot a local property of the image but rather would have to be
defined by averaging the image over a broad region in some manner. This is
8 consideradble complication and it is hard to see howv it could be done with
sufficient accuracy. Adding a constant luminance to an image does not
affect the peaks, and since adding a constant luminance gradient shifts
peaks by an amount inversely proportional to the curvature of the peak,
peaks of the same curvature are shifted by equal amounts, leaving their
separation unchanged. Thus slowly changing luminance backgrounds have
1ittle effect on the peaks. Another interesting property of quadratics is
that the sum of a set of quadratics with equal curvatures but different
centers will be a single qusdratic whose peak coincides with the mean of
the centers of the original quadratics, This indicates that an unresolved
image (one narrower then the line spread or interpolation function) will
have only a single pesk which coincides with the mean (center of gravity)

of the luminance distridbution.
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There is, however, at least one problem with concentrating on
luminance peaks for position information. An edge or step function
certainly has s definite position, but there are no peaks to mark it,

There is an interesting way around this problem. Suppose the interpolation
function had s shape like that in Fig 2s, which is roughly the shape
appropriate for quadratic interpolation. The rest of Fig 2 shows what

happens to a step function (2b) after being convoluted with the line spread

function (2c) and then reconstructed (2d) using the interpolation function
of Fig 2a. The interpolation causes overshoots and undershoots, like Mach
bands, to occur and thus produces a peak to mark the edge. Thus the
*imperfect’ interpolation has a very useful side effect, the association of
8 peak with s luminance edge in the reconstructed function. Interestingly,
these induced peaks do mot coincide with the original stimuolus edges but
are systematically shifted. 7This introduces a systematic error inm the
position of an edge that might be measurable. (However, since the error is

largely systematic, it can in principle be corrected for.)

The interpolation mechanism

In this section we discuss the mechanism which performs the
reconstruction of the sampled image. We assume tkis process is linear in
the sense that the ontput is s linear function of the inputs. Then the
output can be considered as the convolution of the (sampled) input function
with sn interpolation function. The interpolation function gives the
weight assigned to each input (photoreceptor) as s function of the distance

betwveen input position and output (neural unit) position. There are (st

least) two quite different methods to perform this interpolation.

v v S i ¥ O T R A S e e i S 40 g
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Direct convolution. The first, which we call interpolation by direct
convolution, is illustrated inm Fig 3a. In this scheme each neural unit
(circles) receives input directly from the nearest photoreceptors
(triangles). Ve have drawn each neunral unit with three inpots, since this
is the minimum number required for quadratic interpolation, and the figure
shows a neural lattice with an interpolation factor (N) of 3. The inmputs
are summed with appropriate weights to implement the interpolation
function, We can see that this scheme is characterized by a large number
of connections per photoreceptors (3N) and s large number of different

weights (3N/2 rounded upwards).

Mutual coupling. An alternative scheme is presented in Fig 3b. We call
this interpolation by mutual coupling, and it is similar to existing models
of lateral inhibition (Ratliff and Hartline, 19594 Ratliff, Hartline and
Miller, 1963). Again each neural unit typically receives input from three
sources: itself and its two nearest neighbors. Each photoreceptor also
provides input for the neural unit immediately below it, but not for any
other. The neural units form a mutnally coupled system obeying a second
order difference equation, with the inputs from the photoreceptors
providing the excitation function. The solution of such a system is given
by the convolution of the excitation function with the impulse response of
the mutnally coupled system, which is exactly the desired result.

This scheme has a aumber of significant advantages over the first.
There ic only omne conn;ctlon per photoreceptor independent of the

interpolation factor N. The number of different weights is also

independent of N. There is one veight for the photoreceptor connection, s
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second for the connection between & mneural unit and itself, and a third for

the connection between a2 neursl unit and its nearest neighbors. Another
weight would only be required if each mneural unit had to be connected to
its second-nearest neighdbors, which would result in a fourth order

difference equation. Another important advantage in the mutual coupling

scheme is that all neural units are the same, except for the additional

photoreceptor input which some receive. In the direct convolution scheme,

the set of weights used by each neural unit depended on the position of the
neural unit relative to the photoreceptors, which requires that each mneural
unit ‘know’ its position to interpolate properly. This complication does
not arise in the second scheme where all neural units sre essentially the
same, That is, for the direct convolution, the interpoleation function was
explicitly contained in s set of weights that depended on position, while
in the mutual coupling case the interpolation is dome implicitly by the
impulse response of the second order system. There is one further
advantage to the second scheme. Suppose that something caused the output
é of one neural nnit to fluctuate upwards. Since this output is an input for
N the adjacent neural units and we estimate that the relative weight given to
nearest neighbors is positive (and approaches unity as the interpolation
factor increases), these neural units will also fluctuate upvards, with the
> net resnlt that the fluctuation in the difference between adjacent neural

‘ units will be highly suppressed. Since peaks are determined only by these
differences, this results in a considerable degree of noise suppression for
the peak detectors, & suppression that does nmot occur in the first scheme.

A natural consequence of the mutual coupling scheme is that the

interpolation factor (the ratio of photoreceptor to nmeural unit spacing)
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must be an integer. There cannot be a fractional number of neunral units
between two photoreceptors. The direct convolution scheme omly requires
that the interpolation factor be the ratio of two integers to guaranmtee
that the neural lattice is coherent with the photoreceptor lattice.

However, the mutual coupling system as illustrated in Figure 3b is
oversimplified since a one dimensional system with only mearest—neighbor
couplings cannot have an impulse response as shown in Figure 2a. However,
& two dimensional system on a hexagonal lattice probably could have such an
impulse response, at least for certain orientations, and a hexagonal system
with nearest—-neighbor and second-nearest-neighbor couplings almost
certainly could. Since the primate photoreceptor array has been shown to
be a highly regular hexagonally packed lattice (Miller, 1979y Hirsch and
Bylton, 1983) we consider the mutuval coupling system to be a viable
notion,

Now let us consider the constraints that can be placed on the
interpolation function. The most important is that peaks should be
reconstructed accurately, and this will be true of most any symmetric
function of reasonsble width which is itself quadratic near x = 0, We
estimate this width as follows, As noted above, quadratic interpolation in
one dimension requires input from at least three photoreceptors. This sets
a minimum ’‘range’ of about +1.5 photoreceptors. A tvo dimensional

quadratic has six coefficients, and thus requires at least six inputs. If

each photoreceptor has six neighbors, then a ‘range’ of 1.5 photoreceptors

v L

is again sufficient. Suppose the range were greater than this. If the o
image were indeed quadratic, this would allow a more accurate constrained

interpolation, However, if the image were mot quadratic, this would result
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T

in the peak at a particular position being shifted around by the luminmance
at a grelatively distant point. If we assume that two fully resolved lines
[ shounld not interfere with each other, this sets a maximum range roughly
comparable to the range of the line spread function for very fine
separations. Then, the interpolation functions might look like Fig 2a with

a totsl width comparable to the line spread function, say about 1 or 2

K d

-, minutes from the positive peak to the negative peak. However, this
assumption does not seem to be correct (i.e., there are ’‘crowvding

offects’).

AN D

A series of experiments reported by Westheimer et 2l.(1975) may
provide a better estimate of the width of the interpolation function.
Westheimer has shown that the ability of observers to discriminste the
vernier offset of s pair of vertical lines or the orientation of a single
vertical line is susceptible to interference from flanking lines, and that
the interference is maximum when the flanking lines were offset from the
target lines by sbout 2 — 3 minutes of arc. If wo attribute the
interference to a conflict between the negative sidelobes of the flanking

lines and the positive central lobe of the target lines (perhaps by causing

Sa a0 a0,

multiple peaks or some other monmquadratic effect), this indicates that the
negative lobes are about 2 -3 minutes from the central positive lobe,
reasonably comparable to the previous guess., Indeed, if the exact

' mochanism of the interference were understood, this experimental technigue

might provide a flitliﬁdiroct method for determining the exact shape of the |

interpolation function.

As discussed below, the interpolation factor N varies in suck a way

that the spacing of neural units and the jnd in separation are roughly

n
a
0
-

L
Ll
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proportional to the separation between luminance peaks. This raises the
possibility that the width of the interpolation function is mot constant
but rather scales with peak separation (or rather with N). This would
nstorally follow if peaks and edges tended to become wider as the

separation between them increased.

Separation measuring and scaling

In this section wve discuss the process of measuring sepsrations
betveen peaks. This discussion is largely based on results of sn
experiment which effectively measured the fractional jnd in separation
(As/s) as a function of the inverse separation (1/s) between two peaks
(Hirsch and Bylton, 1982). (The jnd for discriminating between spatial
frequencies was also measured as a function of spatial frequency, and those
results were also found to depend only on the distance between two pesks in
the spatial frequency grating. An example of the results appears in Fig.
4. The relstion between frequency and separstion is f = 1/s and Af/f =
As/s). It was found that As tended to take on discrete values given by 1/N
times the photoreceptor spacing, and that the valune of N varied with s in
such a vay that As/s was roughly constant, Specifically, it was found that
As/s as a function of 1/s consisted of segments of constant As with As
given by .008°/N within a segment, and that the transition between
different segments occurred at intervals that were equally spaced in 1/s
snd coincided with a2 maximum value of As/s of spproximately .032, On the
sverage, As/s had a value of .025,

The first step in sepsration measurement is to locate the positions of

the peaks. This is illustrated in Fig 1f vhere each noural unit, plus the

L%
.
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tvo adjscent neural units, is fed into a peak detector (squares). Ty, pesk
dotector compares the two successive differences between the thres meyra)
vnits and docides if the sign of the slope has changed. The output of the
peak detector is a logical signel indicating that a peak has occuorred
within +1/2 neural unit of the curremt position. Thus the effective
spacing of the neural units introduces a fundamental limit to the sccuracy
vith which a peak can be located, the positional quantization error of the
neural unit lattice. The location of the second peak is similarly
determined to an accuracy of +1/2 neural umit, The distance between the
two peaks is then determined to an sccuracy of +1 meural unit. This
reflects the essentially digital nature of the position information:
separation is measured by counting the number of neural units separating
the two peaks, and the counting process is subject to a +1 count
uncertainty. Alternstively, the quantization error can be sttributed to
the ‘rounding’ of the peak position to the mearest neural unit position.
It is clear that the limit of zresolution in separation is proportional
to the spacing of the meoral naits, If the meural umnit spacings tske on

the values 4/N as described previously, then the jnd in separation will be

proportional to 4/N. Experimentally, we find that As = ,008°/N, where As

is defined as the difference in separation necessary to correctly
discriminate between two different separations 75% of the time. If we
sssume the psychometric function is gaussian, then s 75% correct response
corresponds to a mesn §§sp1uco-ent of .68 atandard deviations., Thus the
ras error is .008’/(.6k) = 1,47 © ,008°, Anatomically, the photoreceptor
spacing 4 is estimated to be adout 30 seconds or .008° Westheimer, 1979),

and hence the ras error is 1.47 ® 4 or 1.47 counts,. Since the maximum

T N R S
O Ry R R S TR T S S
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quantization error is only +1 count, sn rms value of 1.47 is clearly
larger than expected suggesting that there may be other sources of error
which are proportional to the neural unit spacing. (We would expect the
ras error to be about .5-.7 counts for pure quantization error). Anm
alternative explanation might be that the peak detectors are spaced every
two neural units rather than every neursl unit, doubling the quantization

error.,

Scaling

Results of the cited experiment show that the jnd in separation As is
not constant but rather varies with the inverse separation (1/s) being
discriminated in such a way that As/s is roughly constant., That is, the
value of N is sutomatically chosen to keep the neural unit spacing roughly
proportional to the separation between the peaks, which is generally
described by saying that As scales with s.

Suppose two reconstructed peaks are separsted by a distance s on a
neursl lattice with spacing Ax, Then the separation in terms of neural
units (counts) is given by L=s/Ax with a +1 neural unit uncertainty. The
fractional uncertainty in sepsration is given by 1/L = Ax/s. From this it
casn be seen that requiring the fractional error to be constant is
essentially the same as requiring that the number of neural mnits spanning
the two peaks (L) be constant. As s becomes small the fractional error
becomes large, and at iéle point reaches a maximum tolerable value of
ayax ™ V/lgisn. (Numerically, =g, is found to be .032 and hence

Lgin = 30.) To keep performance acceptable for smaller values of s the

value of Ax must be decreased. As discussed adove, the nature of the

DRET S AR Byl N LR
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interpolation mechanism is such that Ax hes the form d/N where 4 is the
photoreceptor spacing and N is the integer interpolation factor, Then the
fractional error is given by (4/N)/s and the minimum vslue of N for a given

s is N= Loi, 4/s, rounded upwards.

One question that might arise at this point is why N varies st all.
At first glance it might seem simpler to keep N at a large fixed value.
The most direct answer to this is that experiments show that N does vary
and in fact takes on the value required to keep As/s constant. There are
tvo argumeants to justify this behavior. The first comes from a
consideration of the errors introduced in separation measurement by errors
in the spacing of photoreceptors. Assume that the photoreceptor lattice is
constructed by placing end to end intervals of mesr width 4 and error o.
The different intervals are assumed to be independent of eachk other. Then
after we have placed down L intervals we have covered a mean distance of s
= L4 with an sccumulated error of o*SQRT(L) = o®*SQRT(s/d). Thus the
accumulated separation error on the photoreceptor lattice increases
proportionally to SQRT(s), and this error will sxceed any fixed error as s
increases. The essential point is that there exist sources of error which
increase as s increases and thus As must also increase with s. If we
assume that objects have some natural width which incresses as the
separation betveen objects increases (i.e., that the boundaries of objects
become bigger as the objects become bigger) then this gives anoiher somnrce
of error that incresses with s.

The photoreceptor spacing argument can be inverted to place s limit on
the fractionsl rms error in photoreceptor spacing (o/d). Ve fimd

experimentally that the average jnd in separation is given by As = = ¢

e - e e LT,
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vhere « = ,025, As discussed above, the jnd corresponds to .68 times the
s orror in s. Thus if the photoreceptor spascing error is mot to dominate
As, we require that the contribution of the photoreceptor error to As is
less than 1/2 the observed value of As or

.68 ¢ g ® SQRT(s/d) ¢ 1/2 ¢ « ¢ 5 or

s s s A X a 4 A AT EEESs 4 o *

o/d < 1/2 ¢ 1/ .68 ® « ® SQRT(s/4).
The average value of L = s/d is 1/« = 40 requiring that o/d ¢ .12, a
reasonsble number, Assuming a minimum separstion of 4 photoreceptors (s/d
= 4) requires o/d < .037, a fairly small number. Perhaps there exists a
spall region of the fovea in which photoreceptor spacing error is small,
and the measurement of smsll separations could be restricted to this
region,

As an alternstive to requiring accurately spaced photoreceptors, it is
conceivable that the system includes a ’self calibration’ feature that can
correct for errors in photoreceptor spacing. This is possible since the
spacing errors cause systematic, position dependent, errors in s. If s is
measured through the AND gate mechanism illustrated in Fig 1g, the
calibrations could be done by sweeping a pair of peaks of fixed separation
scross the retina and marking all AND gates which respond as belonging to
the same value of s. This limits the error contribution from photoreceptor
spacing to about one neural unit since s spacing error greater than this
will result in the AND gate being classified as responding to a different
value qf s. Note that this error is still proportional to the neural unit
spacing. (Similarly, since any errors in the interpolation weights
represent systeomatic errors, it is possidble to correct them.) BHowever,

while such corrections are conceivable, we feel that it is more likely that
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the photoreceptor lattice is constructed with sufficient accuracy to begin
with.

The second argument in favor of scaling is that having s number of
different N’s does not mecessarily increase the complexity of the whole
system, defined as the number of parts required to dbuild it, In fact, if
one attempts to count the total number of neural elements required to
construct a hardware separation detector, it turns out that a system with
As/s constant actually requires vastly fewer elements than ome with As
constant. This occurs because the system must check all pairs of peak
detectors and the system with scaling bas many fewer pairs. This is
illustrated in Fig 1g. The separation detector must perform the operation
'Peak(x) AND Peak(x + s)’' OR’ed over all starting positions x. To see the
effect of scaling, assume that the left band peak position is fixed at x =
0. Then the number of pairs (AND gates) required to cover all possible

position for the right hand peak from syj, to sy is given by
Smax

ds
As

Sain
If we take As as the constant Asgjp = © ¢ 354, then the number of
pairs is (1/=)(sgy5/8n4n)- On the other hand, if As varies with s as
As = « ¢ g, the integral becomes
(1/=) 1n (sgqy/8min).

For large sg,;/sgin the system with scaling requires many fower pairs
than the one without.

The above analysis corresponds to & one dimensionsl systea im which

the image is required to be exactly centered in the visval field, and is
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only meant as an illustration., The correct analysis requires knmowledge of
how the neural units are distributed in two dimensions as a function of
sccentricity. Actually, the sbove case is relatively unfavorable to the
scaling mechanism. The true advantage of the scaling mechanism is probably
much better than x/1n(x). Extending the above argument to two dimensions
introduces an extra factor of s/As under the integral sign. Then with no
scaling the number of elements is 1/2 (1/«)® (sg,./8445)2 but with

scaling the number is (1/=)% In (sgy,5/8nip), still only s logarithmic
increase,.

It should be noted that the notion of scaling presented here differs
fundamentally from the usual motion of scaling with eccentricity. The more
conventional view is that there exists a single non-linear mapping between
the rotina and the cortex, with a step in distance of constant size on the
cortex corresponding to a step in distance on the retina whose size
increases with eccentricity., In contrast to this, we suggest that there
exists a set of linear mappings from the retina to the cortex with
different scales or magnification factors. VWhile the different mappings
have different magnification factors, within one map the magnification
factor is constant. The physiologically and psychophysically observed
increase in magnificetion factor with eccentricity presumably occurs
because progressively finer mappings are restricted to progressively
smaller eccentricities. This corresponds to requiring that images be
roughly_centorod in the visual field. Then the boundaries of wider objects
tend to fall at larger eccentricities while small objocts 1lie within small
eccentricities, and the fine maps are only needed at small eccentricities.

Further, if we assume that roughly equal neural resources are allocated to

S W .
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each map, then the total srea that can be covered by a map decreases as its
fineness increases. As a function of eccentricity, we might expect As to
be constant over some central region covered by the finest map, and then
increase in a series of steps as the boundaries of successively coarser
maps are exceeded, with As roughly proportional to eccentricity. Note that
there is no & priori reason for the various maps to be circularly
symmetric. The scaled linear maps hsve tremendous advantages over a
nonlinear map in terms of the simplicity of image analysis and pattern
recognition., It is also difficult to accurately measure distances on a
nonlinear map since this requires integrating varisble magnification

factors along some path which is likely to be difficult to define.

Scaling at Low Frequencies

The discussion of scaling sbove was basically addressed to a high
frequency or hyperacuity region involving neural lattices with spacing
equal to or less than the photoreceptor spacing. Given the advantages of a
scaled system over a non—scaled system, it would seem quite reasonable to
assume that the scaling property is general and applies to all image sizes
or spatial frequencies accessible to the human visual system, say angular
sizes of 90° to 1/30°, snd preliminary messurements indicate that this is
indeed the case. We now discuss how scaling might be accomplished at low
frequencies. At high spatial frequencies the effective neural spacing is
4/N vhere d is the phokorocoptpt spacing and N decreases with decreasing
frequency in order to keep 4/N proportional to s = 1/f., This scheme will

fail eventually simply becanse there are no positive integers less than 1,

and indeed a breakdown in the d4/N dependence is observed to occur below 2
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cycles/deg, with As remaining roughly proportional to s rather than
becoming a constant equsl to d. In fact, experimentally we observe that
for foveal messurements between about 1 and 2 cycles/deg, As takes on the
value d ® 2 which we interpret as evidence for a neural lattice with
spacing twice the photoreceptor spacing. Thus at low frequencies the
function of the scaling system is to reduce sa excessively fine retinal
photoreceptor lattice to a coarser neural lattice which is presumably more
tractable since it has fewer elements. There are two straightforward
mechanisms for accomplishing this, one possible only in the central region
of the retins (defined as the region where each photoreceptor has its own
connection to the cortex) and the other suitable for foveal and also
peripheral regions where there are many fewer cortical connections than
photoreceptors.

In the central region where there exists one connection per
photoreceptor the basic task is simply to produce a coarser lattice. This

could be done simply by constructing a mneural lattice whose spacing is N

times coarser (not finer) than the photoreceptor spacing snd using an
interpolation mechanism 1ike Fig. 3b in reverse, with 1 neural unit output
per N photoreceptor inputs rather than N outputs per each photoreceptor
input, with a brosd interpolation function to provide pooling over N
photoreceptors rather than an interpolation between photoreceptors. In
this case As takes on the form d ® N as opposed to the previons case where
As 'as_le. with the value of N increasing to keep As/s constant as s
increases., Note that N pow increases with s to keep As/s from getting too

small, whereas previously N increased as 1/s increased to keep As/s from

getting too large.
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The above scheme is only feasible in the central region where there
slready must exist ome cortical comnection per photoreceptor to allow 1/N
interpolation. In peripheral regions where the hyperscuity imterpolation
mochanism does not exist it would be foolish to transmit the ontput of
every photoreceptor to the cortex only to discard most of the information.
A much more elegant scheme would be to pool groups of photoreceptors into
spatial sampling units, effectively forming large photoreceptors, snd
transmit only one output per eack pool to the cortex. As long as the
widths of the pools and the center—to-center spacing of the sampling points
(pool centers) is such that & narrow feature contributes to at least three
sample points ome can then invoke a cortical interpolation mechanism
identical to the one that interpolated between individual photoreceptos to
now interpolate betveen the sampling pools. 1Indeed, the whole mechanism is
identical to the one discussed for hjigh frequencies excopt that the line
spreading is now sccomplished by retinal pooling rather than opticsl

blurring, snd the retinsl lattice is formed by the centers of the pools

rather than by individual photoreceptors. The retinal pooling mechanisms
might look 1ike Fig. 3b in reverse, as above, If the center-to-center
spacing of the pools is K times the photoreceptor spacing 4, then As has I
the form K8/N where K is the retinal pooling factor and N is the cortical ‘
interpolation factor.
Preliminary results suggest that the second scheme is indeed employed
at low frequencies, at least for frequencies between .25 and 2 cycles/deg
(image sizes between .5° and 4°) in the fovea. VWithin this range As
sppears to have the form Kd/N where 4 is .008°, K is 8, and N taskes on the

values 1 through 4. (That is, there are 4 segments to the Af/f curve

ST
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between .25 and 2¢/deg.) This is slightly different from the high
frequency region where N took on the values 1 through 7 or 8. A retinmal
pooling factor of 8 corresponds to & center—to-center spacing for the
retinal pools of B ¢ .008° = _064° or 1/16°. If we assume that there are a
sequence of pool sizes each 8 times larger than the last, then image sizes
between 32° and 4° will be handled by pools with center—to-center spacing

8 % 1/16° = .5° and image sizes larger than 32° will be handled by pools
with center—to—center spacing of 8 ¢ 5% = 4*, While these numbers are
somewhat speculative, it is clear that the high frequency band (K =1, 8
segments, 2 to 32 c/deg) plus three low and intermediate frequency bands (K
= 8, 64, and 512 with 4 segments each, minimum frequencies 2/K cycles/deg)
provide a set of 20 neural maps spanning image sizes from 1/32% to over
180° with As/s or Af/f never varying by more than a 2/1 ratio. The
different values of K correspond to sampling by individual photoreceptors
(K = 1) and to sampling by pools of photoreceptors with center-to-center
spacing of K & ,008° = 1/16°, .5°, and 4° respectively.

Since large images tend to be associated with high eccentricities we
expect thast there should be a correlation between the distribution of the
sizes of the retinal sampling pools and eccentricity. In the fovea sll 4
values of K might coexist with the smaller values of K disappearing as
sccentricity increases and only the largest pools existing at the highest
eccentricities, It will be interesting to see if this simple scheme can be

reconciled with the an;iony of the retina.
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Application to Other Experiments
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The discussion above was specifically based on s particular

experiment, the discrimination of the separation between a pair of parallel

lines as a function of the sepsration. Our model must of course be very
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general if it is to be useful. Ve present here an application of the model
to some other experiments, albeit also very simple ones. Application of
the model to more complicated visual tasks probably would not require any
fundamentsl modification.

Separation—discrimination tasks can be regarded as having two
independent characterizations. The first is the spatial scale s and the
second is the jnd or resolution scale As. For the pr-allel line task s was
taken to be the perpendicular distance between the two lines and As was the
Jad ia separation also measured slong the perpendicular. The parallel line
task is s special case in which the perpendicular separation between the
lines is both the stimulus variable used to measure As and also the
scale—setting distance.

A quite different situation prevails in the classical vernier
discrimination task which measures the jnd for aligning two pointers
separated by some gap. In this case the spatial scale s is defined by the
length of the gap between the two pointers whereas As is the jnd lateral
offset between the pointers and is measured perpendicular to the gap. Thus
s for the vernier discr%ninntion task is not the stimulus variable but
rather 2 parameter of ;ho experiment, Further, s and As are measured along

orthogonal directions. Thus, outside the context of our model, it is dy mo

means obvious that there should be a direct connection detween s and As

(gap length and vernier threshold). Nevertheless, we predict that As for
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vernier discrimination should be the same as As for line separation
discrimination if the gap length equals the parallel line separation,
neglecting orientation effects discussed below., Preliminary results
confirm this prediction. The connection between the two experiments can be
soen more clearly if we reduce the limes in the two experiments to small
dots. Then the parallel line task measures As along the line comnecting
the dots whereas vernier discrimination measures As perpendicular to the
line connecting the dots. The scale s in both cases is set by the distance
between the dots, and it is s which determines As for both directions
(neglecting orientation effects). This example indicates that applying our
model to other experiments mainly requires the identification of the
scale-setting distance s, which may not be easy for complicated tasks.

There is another concern in applying the model to small aépntntions.
Moch of the discussion above was based on an experiment ’'which effectively
measured the ability of observers to discriminate the separation between
two parallel lines’. We included the wvord ‘effectively’ because that
experiment mainly measured the sbility of observers to discriminate between
sinusoidal spatial frequency gratings of different spatial frequencies. Ve
have shown that spatisl frequency discrimination is the same as
discriminating the separation between two lines with separation s - 1/f¢,
wvhere £ is the spatial frequency. However, sinusoidal gratings possess one
sterling virtue that makes them more suvitable for utudylni small values of
s (hl.h_valuoa of f) than the corresponding line pair (or dot pair) would
be. T‘is virtue is that no linear operation (line spread, interpolation)
can change the shape of the grating, but rather can only ochange the

contrast and shift the phase., Thus the peaks of a grating of frequency f
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sre always separated by s = 1/f, no matter how small s gets (when it gets
too small, the grating coatrast becomes too low for the gratinmg to bde
‘seen). In contrast to this, as two lines get close together, their
profiles (as determined by the line spread and interpolation function)
begin to interfere so that the separation between the two peaks will nmo
longer simply be the separation betwveen the exteraal marrow lines. When
they get too close together there will only be one peak and the two lines
will appear to be a single fat line. Thus in practice there will often be
critical minimum separations snd line lengths in an experiment (on the
order of a few minutes) and our model might break down if these conditions
are not met. We also find that failing to randomize the positions of
stimuli can produce unexpected results, and that a repetitive stimulus such
as & grating gonerally gives better defined segmentation than a mon-
repetitive pattern such as a single pair of linmes, possibly because the

repetition provides stronger excitation to the scale setting mechanism.

Orientation Effects

There is one further point that meeds to be made in our model which

does not sppear in any of the one-dimensionsl arguments given previously.
The problem is the identification of the perpendicular distance between two
parallel lines as the appropriaste definition of their separation., While
this is a simple and appealing definition it is by no means odviously
correct, Ome could co;éninly imagine that there existed certain intrinsic
moasurement directions fixed with respect to an observer’s hesd orientation
snd that separations are always messured along one of these matural

directions rather than along a direction defined by the stimulus itself.

.....................
.........
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This leads to the possibility thet both s and As are dependent on the
orientation of the stimulus relative to the observer. 8ince we have
assigned the photoreceptor lsttice a fundamental role in our model, it
would seem necessary to assume that the two dimensional characteristics of
the photoreceptor lattice must be of importance. The fundamental two—
dimensional characteristic of photoreceptors is their hexagonal packing and
the likely consequence of this for our model is that there eoxist intrinsic
directions for measuring separation and that these directions are separated
in oriemtation by 60°, This suggests that the effective distance between
twvo parallel lines is the perpendicular distance divided by the cosine of
the angle between the perpemdicular direction and the closest intrinsic
direction, Since this angle cannot be greater than 30°, the maximum
possible effect is 1/c0s(30°) = 1,15, Thus, the effective distances may be
larger than the perpendicular distances by as much as 15% (or spatial
frequencies lowered by 15%) as orientation is varied, Since the effect is
systematic, it can in principle be corrected for and thus may mot be
measureable, However, if changing the orientation caused the scale setting

separation to pass through a transition from one value of N to another, the

resulting change in As would be measureable, and indeed we have observed

this effect (Hirsch and Hylton, 1983).

= WA I AP e )

Stereo Vision

We have not considered stereo vision in detail. However, much of the
model seems directly transferable to stereo acuity tasks. Ve make this
srgument based on tvo results reported by Butler and Westheimer (1978).

First, stereo disparity thresholds sre susceptidble to interference from
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flanking lines in direct analogy to the interference of flanking linmes on
vernier scuity thresholds and line orientation thresholds. Since we
attridbute this interference to the interpolation mechanism, we take this as
svidence that ssmpling and interpolation as discussed above applies to
stereo vision.

Butler and Westheimer (1978) also report that stereo disparity
thresholds increase as diosparity increases, which he describes as a
disparity tuning function. We interpret this as the anslog of As/s scaling
for stereo vision where As is identified as the jnd in disparity and s is
disparity. We suggest that disparity threshold as a function of disparity
is analogous to line separation threshold as a function of line separation
and vernier offset threshold ss a function of gap length. The rise of
disparity threshold with disparity is not the result of s disparity tuning
mechanism but rather a consequence of the ubiquitous scaling mechanism,
with disparity identified as the scale setting variable for stereo acuity
tasks, This might be envisioned as two parallel]l lattice planes, one for
each eye, stacked vertically and registered in such a way that features
with zero disparity are vertically aligned. Disparity is then the distance
measured parallel to the lattices between a point in ome lattice and the
corresponding point in the other, wherecas a spatiasl separation is measured
betwesn tvo points in the same plane, establishing the analogy between

disparity and spatial separstion. Then disparity thresholds should scale

with disparity just as spatial thresholds scale with spatial variabdles.

Suamgry

We have presented a model for the processing of positional information
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in the human visual system. The model can be summarized as follows.

An external luminance distribution or image is blurred by comvolution
with the line spread function so that a narrow linme is spread over st least
three photoreceptors. The blurred image on the retina is then sampled by
the photoreceptor lattice and transmitted to higher visual centers. The
neural represenation of the image is constructed by interpolating the
sampled function onto a lattice of neuvral units. The reconstruction
process is implemented by convolution with the interpolation function. The
effective spacing of elements in the neural lattice is finer than the
spacing of photoreceptors by an integer factor N. The neural lattice
spacing determines the level of accuracy to which positions of stimulus
features can be determined. Higher values of N correspond to higher levels
of spatial resolution.

Position information in the recontructed image is extracted by
determining the locations of specific stimulus features on the mneural
lattice, in particulsr the luminance peaks. The separation (s) between
festures such as peaks is determined by counting the number of neural
units betwveen the features. Hence the error in determining a separation
(As) is proportionsl to the positional quantization error (spacing) of the
neural unit lattice,

The interpolation factor N (the ratio of photoreceptor spacing to
offective nenral unit spacing) is chosen to keep the fractional error
(As/s) approximately constant. More goenerally, the features whose

positions or sepsrations are being analyzed define a spatial scale (s)

which is slso used to set the scale for the spatial resolution (As).




31 Hirsch, Joy and Hylton, Ron

Acknowledgements

This work was partially supported by grants from NEI EY00785 and
EY00167, Research to Prevent Blindness, The Connecticut Lions Eye Research
Foundation Association, and the Air Force Office of Scientific Research,
Alr Force Systems Command, USAF, under grant number 49620-83-C-0026. The
U.S. Government is authorized to reproduce and distridute reprints for

governmental purposes notwithstanding sny copyright notation thereon.




30 Hirsch, Joy and Bylton, Ron

There is an interesting way to summarize the sampling and
reconstruction system. As discussed above, the ‘coarse’ sampling by the
photoreceptors is the most efficient encoding of the image falling on the
retina. This is certainly an advantage when transmitting the information
from the retina to the cortex. However, in the cortex the most efficient
possible encoding is not necessarily a convenient representation of the
image. The interpolation system provides a mechanism for nnpacking the
encoded information into a more easily analyzed form. The neunral lattices
of different N represent different degrees of unpacking, and the degree of
unpacking selected is chosen to keep As/s constant. The neural
representations of different N contain no information that was not present
in the original sampling. They contain the same information in a more

accessible form.
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Figure Captions

EIG. 1 A schematic of the model is given in Fig 1. Fig 1a shows the
external luminance distribution which we have taken to be a delta

function, Fig 1b shows the external image after convolution with the line
spread function. Fig 1lc illustrates sampling of the retinal image by
photoreceptors. Fig 14 represents the interpolation process, which sccepts
the coarsely sampled input from the photoreceptors and produces a more
finely spaced sampling on the neural unit lattice, Fig le. We bhave drawn
the neursl unit spacing as 1/3 the photoreceptor spacing: in general it
can be 1/N. Fig 1f illustrates pesk detection on the neural unit lattice.
A peak detector (square) requires input from 3 sdjacent meural units. Fig
1g illustrates a separation detector: Peak(x) AND Peak (x+s) is OR’ed over

all x.

FIG. 2 (s) a prototype interpolation function, (b) a step function that
is blurred by the line spread function, (c) and then reconstructed (4)

using the interpolation function in (a).

FI1G. 3 (a) Interpolation by direct convolution. (b) Interpolation by

mutuval coupling. <

See text for explsnation.
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FIG. 4 Reprinted from Hirsch and Hyltom, 1982 (Fig. 1). Fractional jnd

7 AL

in spatial frequency, Af/f, as a function of reference frequency, f, for
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three observers: JE, BA and MM, The straight lines passing through the

origin represent regions of constant angular jand, As.
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